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3 First examples and properties

3.1 Construction of topologies and examples

Proposition 3.1. Let V be a vector space and {pα}α∈A a set of seminorms

on V . For any �nite subset I ⊆ A and any ε > 0 de�ne

UI,ε := {x ∈ V : ∀α ∈ I : pα(x) < ε}.

Then, the sets UI,ε form the basis of the �lter of neighborhoods of 0 in a

topology on V that makes it into a tvs. Moreover, this topology is Hausdor�

i� for any x ∈ V \ {0} there exists α ∈ A such that pα(x) > 0.

Proof. Exercise.

Theorem 3.2. Let V be a tvs. Then, V is locally convex i� there exists a set

of seminorms inducing its topology as in Proposition 3.1. Also, V is locally

convex and pseudo-metrizable i� there exists a countable such set. Finally,

V is semi-normable i� there exists a �nite such set.

Proof. Exercise.

If V is a vector space over K and S is some set, then the set of maps
S → V naturally forms a vector space over K. This is probably the most
important source of topological vector spaces in functional analysis. Usually,
the spaces S and V carry additional structure (e.g. topologies) and the maps
in question may be restricted, e.g. to be continuous etc. The topology given
to this vector space of maps usually depends on these additional structures.

Example 3.3. Let S be a set and F (S, K) be the set of functions on S
with values in K. Consider the set of seminorms {px}x∈S on F (S, K) de�ned
by px(f) := |f(x)|. This gives F (S, K) the structure of a locally convex
tvs. The topology de�ned in this way is also called the topology of pointwise

convergence.

Exercise 4. Show that a sequence in F (S, K) converges with respect to this
topology i� it converges pointwise.

Example 3.4. Let S be a set and B(S, K) be the set of bounded functions
on S with values in K. Then, B(S, K) is a normed vector space with the
supremum norm:

‖f‖ := sup
x∈V

|f(x)| ∀f ∈ B(S, K).

The topology de�ned in this way is also called the topology of uniform con-

vergence.
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Exercise 5. Show that a sequence in B(S, K) converges with respect to this
topology i� it converges uniformly on all of S.

Exercise 6. (a) Show that on B(S, K) the topology of uniform convergence
is �ner than the topology of pointwise convergence. (b) Under which cir-
cumstances are both topologies equal? (c) Under which circumstances is the
topology of pointwise convergence metrizable?

Example 3.5. Let S be a topological space and K the set of compact subsets
of S. For K ∈ K de�ne on C(S, K) the seminorm

pK(f) := sup
x∈K

|f(x)| ∀f ∈ C(S, K).

The topology de�ned in this way on C(S, K) is called the topology of compact

convergence.

Exercise 7. Show that a sequence in C(S, K) converges with respect to this
topology i� it converges compactly, i.e., uniformly in any compact subset.

Exercise 8. (a) Show that on C(S, K) the topology of compact convergence
is �ner than the topology of pointwise convergence. (b) Show that on the
space Cb(S, K) of bounded continuous maps the topology of uniform conver-
gence is �ner than the topology of compact convergence. (c) Give a su�cient
condition for them to be equal.

Exercise 9. Let V be a vector space and {pn}n∈N a sequence of seminorms
on V . De�ne the function q : V → R+

0 via

q(x) :=
∞∑

n=1

2−n pn(x)
pn(x) + 1

.

(a) Show that q is a pseudo-semi-norm on V . (b) Show that the topology
generated on V by q is the same as that generated by the sequence {pn}n∈N.

De�nition 3.6. Let S be a set, V a tvs. Let S a set of subsets of S with
the property that for X, Y in S there exists Z ∈ S such that X ∪ Y ⊆ Z.
Let B be a base of the �lter of neighborhoods of 0 in V . Then, for X ∈ S

and U ∈ B the sets

M(X, U) := {f ∈ F (S, V ) : f(X) ⊆ U}

de�ne a base of the �lter of neighborhoods of 0 for a translation invariant
topology on F (S, V ). This is called the S-topology on F (S, V ).
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Proposition 3.7. Let S be a set, V a tvs and S ⊆ P(S) as in De�nition 3.6.

Let A ⊆ F (S, V ) be a vector subspace. Then, A is a tvs with the the S-

topology i� f(X) is bounded for all f ∈ A and X ∈ S.

Proof. Exercise.

Exercise 10. (a) Let S be a set and S be the set of �nite subsets of S. Show
that the S-topology on F (S, K) is the topology of pointwise convergence. (b)
Let S be a topological space and K the set of compact subsets of S. Show
that the K-topology on C(S, K) is the topology of compact convergence. (c)
Let S be a set and S a set of subsets of S such that S ∈ S. Show that the
S-topology on F (S, K) is the topology of uniform convergence.

3.2 Completeness

In the absence of a metric we can use the vector space structure of a tvs to
complement the information contained in the topology in order to de�ne a
Cauchy property which in turn will be used to de�ne an associated notion
of completeness.

De�nition 3.8. A sequence {xn}n∈N in a tvs V is called a Cauchy sequence

i� for every neighborhood U of 0 in V there is a number N > 0 such that
for all n,m ≥ N : xn − xm ∈ U .

Proposition 3.9. Let V be a mvs with translation-invariant metric. Then,

a sequence in V is Cauchy in the sense of De�nition 3.8 i� it is Cauchy in

the sense of De�nition 1.49.

Proof. Straightforward.

This Proposition implies that there is no con�ict with our previous def-
inition of a Cauchy sequence in metric spaces if we restrict ourselves to
translation-invariant metrics. Moreover, it implies that for this purpose it
does not matter which metric we use, as long as it is translation-invariant.
This latter condition is indeed essential.

Exercise 11. Give an example of an mvs with two compatible metrics d1,
d2 and a sequence x, such that x is Cauchy with respect to d1, but not with
respect to d2.

In the following, whenever we talk about a Cauchy sequence in a tvs
(possibly with additional) structure, we mean a Cauchy sequence according
to De�nition 3.8.
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For a topologically sensible notion of completeness, we need something
more general than Cauchy sequences: Cauchy �lters.

De�nition 3.10. A �lter F on a subset A of a tvs V is called a Cauchy

�lter i� for every neighborhood U of 0 in V there is an element W ∈ F such
that W − W ⊆ U .

Proposition 3.11. A sequence is Cauchy i� the associated �lter is Cauchy.

Proof. Exercise.

Proposition 3.12. A converging sequence is Cauchy. A converging �lter is

Cauchy.

Proof. Exercise.

De�nition 3.13. A subset U of a tvs is called complete i� every Cauchy
�lter on U converges to a point in U . It is called sequentially complete i�
every Cauchy sequence in U converges to a point in U .

Obviously, completeness implies sequential completeness, but not neces-
sarily the other way round. Note that for an mvs with translation-invariant
metric, completeness in the sense of metric spaces (De�nition 1.52) is now
called sequential completeness. However, we will see that in this context it
is equivalent to completeness in the sense of the above de�nition.

Proposition 3.14. Let V be a mvs. Then, V is complete (in the sense of

tvs) i� it is sequentially complete.

Proof. We have to show that sequential completeness implies completeness.
(The opposite direction is obvious.) We use a translation-invariant metric
on V . Suppose F is a Cauchy �lter on V . That is, for any ε > 0 there
exists U ∈ F such that U − U ⊆ Bε(0). Now, for each n ∈ N choose
consecutively Un ∈ F such that Un − Un ⊆ B1/n(0) and Un ⊆ Un−1 if n > 1
(possibly by using the intersection property). Thus, for every N ∈ N we have
that for all n,m ≥ N : Un − Um ⊆ B1/N (0). Now for each n ∈ N choose
an element xn ∈ Un. These form a Cauchy sequence and by sequential
completeness converge to a point x ∈ V . Given n observe that for all y ∈ Un

: d(y, x) ≤ d(y, xn) + d(xn, x) < 1
n + 1

n , hence Un ⊆ B2/n(x) and thus
B2/n(x) ∈ F . Since this is true for all n ∈ N, F contains arbitrarily small
neighborhoods of x and hence all of them, i.e., converges to x.

Proposition 3.15. (a) Let V be a Hausdor� tvs and A be a complete subset.

Then A is closed. (b) Let V be a complete tvs and A be a closed subset. Then

A is complete.
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Proof. Exercise.

Exercise 12. Which of the topologies de�ned above are complete? Which
become complete under additional assumptions on the space S?

3.3 Finite dimensional tvs

Theorem 3.16. Let V be a Hausdor� tvs of dimension n ∈ N. Then, any

isomorphism of vector spaces from Kn to V is also an isomorphism of tvs.

Moreover, any linear map from V to any tvs is continuous.

Proof. We �rst show that any linear map from Kn to any tvs W is continuous.
De�ne the map g : Kn × Wn → W given by

g((λ1, . . . , λn), (v1, . . . , vn)) := λ1v1 + · · · + λnvn.

This map can be obtained by taking products and compositions of vector
addition and scalar multiplication, which are continuous. Hence it is contin-
uous. On the other hand, any linear map f : Kn → W takes the form
f(λ1, . . . , λn) = g((λ1, . . . , λn), (v1, . . . , vn)) for some �xed set of vectors
{v1, . . . , vn} in W and is thus continuous by Proposition 1.16.

We proceed to show that any linear map V → Kn is continuous. We
do this by induction in n starting with n = 1. For n = 1 any such non-
zero map takes the form g : λe1 → λ for some e1 ∈ V \ {0}. (If g = 0
continuity is trivial.) For r > 0 consider the element re1 ∈ V . Since V
is Hausdor� there exists an open neighborhood U of 0 in V that does not
contain re1. Moreover, we can choose U to be balanced. But then it is clear
that U ⊆ g−1(Br(0)). That is, g−1(Br(0)) is a neighborhood of 0 in V . Since
open balls centered at 0 form a base of neighborhoods of 0 in K this implies
that the preimage of any neighborhood of 0 in K is a neighborhood of 0 in
V . By Proposition 2.12.a this implies that g is continuous.

We now assume that we have proofed the statement in dimension n− 1.
Let V be a Hausdor� tvs of dimension n. Consider now some non-zero
linear map h : V → K. We factorize h as h = h̃ ◦ p into the projection
p : V → V/ kerh and the linear map h̃ : V/ kerh → K. kerh is a vector
subspace of V of dimension n − 1. In particular, it is a Hausdor� tvs and
hence by assumption of the induction isomorphic as a tvs to Kn−1. Thus, it
is complete and by Proposition 3.15.a closed as a subspace of V . Therefore
by Proposition 2.15 the quotient tvs V/kerh is Hausdor�. Since V/kerh is
also one-dimensional it is isomorphic as a tvs to K as we have shown above.
Thus, h̃ is continuous. Since the projection p is continuous by de�nition, the
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composition h = h̃ ◦ p must be continuous. Hence, any linear map V → K is
continuous. But a linear map V → Kn can be written as a composition of
the continuous map V → V n given by v 7→ (v, . . . , v) with the product of n
linear (and hence continuous) maps V → K. Thus, it must be continuous.

We have thus shown that for any n a Hausdor� tvs V of dimension n is
isomorphic to Kn as a tvs via any vector space isomorphism. Thus, by the
�rst part of the proof any linear map V → W , where W is an arbitrary tvs
must be continuous.

De�nition 3.17. A topological space is called locally compact i� every point
has a compact neighborhood.

Theorem 3.18 (Riesz). Let V be a Hausdor� tvs. Then, V is locally com-

pact i� it is �nite dimensional.

Proof. If V is a �nite dimensional Hausdor� tvs, then its is isomorphic to
Kn for some n by Theorem 3.16. But closed balls around 0 are compact
neighborhoods of 0 in Kn, i.e., Kn is locally compact.

Now assume that V is a locally compact Hausdor� tvs. Let K be a
compact and balanced neighborhood of 0. We can always �nd this since
given a compact neighborhood by Proposition 2.9 we can �nd a balanced
and closed subneighborhood which by Proposition 1.26 must then also be
compact. Now let U be an open subneighborhood of 1

2K. By compactness of
K, there exists a �nite set of points {x1, . . . , xn} such that K ⊆

∪n
i=1(xi+U).

Let W be the �nite dimensional subspace of V spanned by {x1, . . . , xn}. By
Theorem 3.16 W is isomorphic to Km for some m ∈ N and hence complete
and closed in V by Proposition 3.15. So by Proposition 2.15 the quotient
space V/W is a Hausdor� tvs. Let π : V → V/W be the projection. Observe
that, K ⊆ W + U ⊆ W + 1

2K. Thus, π(K) ⊆ π(1
2K), or equivalently

π(2K) ⊆ π(K). Iterating, we �nd π(2kK) ⊆ π(K) for all k ∈ N and hence
π(V ) = π(K) since V =

∪∞
k=1 2kK as K is balanced. Since π is continuous

π(K) = π(V ) = V/W is compact. But since V/W is Hausdor� any one
dimensional subspace of it is isomorphic to K by Theorem 3.16 and hence
complete and closed and would have to be compact. But K is not compact, so
V/W cannot have any one-dimensional subspace, i.e., must have dimension
zero. Thus, W = V and V is �nite dimensional.

Exercise 13. (a) Show that a �nite dimensional tvs is always locally com-
pact, even if it is not Hausdor�. (b) Give an example of an in�nite dimen-
sional tvs that is locally compact.
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3.4 More on function spaces

De�nition 3.19. A topological space S is called completely regular i� given
a closed subset C ⊆ S and a point p ∈ S \ C there exists a continuous
function f : S → [0, 1] such that f(C) = {0} and f(p) = 1.

De�nition 3.20. A topological space is called normal i� it is Hausdor� and
if given two disjoint closed sets A and B there exist disjoint open sets U , V
such that A ⊆ U and B ⊆ V .

Lemma 3.21. Let S be a normal topological space, U an open subset and C
a closed subset such that C ⊆ U . Then, there exists an open subset U ′ and
a closed subset C ′ such that C ⊆ U ′ ⊆ C ′ ⊆ U .

Proof. Exercise.

Theorem 3.22 (Uryson's Lemma). Let S be a normal topological space

and A, B disjoint closed subsets. Then, there exists a continuous function

f : S → [0, 1] such that f(A) = {0} and f(B) = {1}.

Proof. Let C0 := A and U1 := S \B. Applying Lemma 3.21 we �nd an open
subset U1/2 and a closed subset C1/2 such that

C0 ⊆ U1/2 ⊆ C1/2 ⊆ U1.

Performing the same operation on the pairs C0 ⊆ U1/2 and C1/2 ⊆ U1 we
obtain

C0 ⊆ U1/4 ⊆ C1/4 ⊆ U1/2 ⊆ C1/2 ⊆ U3/4 ⊆ C3/4 ⊆ U1.

We iterate this process, at step n replacing the pairs C(k−1)/2n ⊆ Uk/2n by
C(k−1)/2n ⊆ U(2k−1)/2n+1 ⊆ C(2k−1)/2n+1 ⊆ Uk/2n for all k ∈ {1, . . . , n}.

Now de�ne

f(p) :=

{
1 if p ∈ B

inf{x ∈ (0, 1] : p ∈ Ux} if p /∈ B

Obviously f(B) = {1} and also f(A) = {0}. To show that f is continuous it
su�ces to show that f−1([0, a)) and f−1((b, 1]) are continuous for 0 < a ≤ 1
and 0 ≤ b < 1. But,

f−1([0, a)) =
∪
x<a

Ux, f−1((b, 1]) =
∪
x>b

(S \ Cx).
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Corollary 3.23. Every normal space is completely regular.

Proposition 3.24. Every metric space is normal.

Proof. Let A, B be disjoint closed sets in the metric space S. For each x ∈ A
choose εx > 0 such that Bεx(x) ∩ B = ∅ and for each y ∈ B choose εy > 0
such that Bεy(y)∩A = ∅. Then, for any pair (x, y) with x ∈ A and y ∈ B we
have Bεx/2(x) ∩ Bεy/2(y) = ∅. Consider the open sets U :=

∪
x∈A Bεx/2(x)

and V :=
∪

y∈B Bεy/2(y). Then, U ∩ V = ∅, but A ⊆ U and B ⊆ V . So S is
normal.

De�nition 3.25. Let S, T be topological spaces and F ⊆ C(S, T ). Then,
F is called equicontinuous at a ∈ S i� for all neighborhoods W of f(a) in T
there exists a neighborhood U of a in S such that f(U) ⊆ W for all f ∈ F .
Moreover, F is called locally equicontinuous i� F is equicontinuous for all
a ∈ S.

Exercise 14. Let S be a topological space and F ⊆ C(S, K). (a) Show that
F is bounded in C(S, K) with the topology of pointwise convergence i� for
each x ∈ S there exists c > 0 such that |f(x)| < c for all f ∈ F . (b) Show
that F is bounded in C(S, K) with the topology of compact convergence i�
for each K ⊆ S compact there exists c > 0 such that |f(x)| < c for all x ∈ K
and for all f ∈ F .

Lemma 3.26. Let S be a topological space and F ⊆ C(S, K) locally equicon-

tinuous. Then, F is bounded with respect to the topology of pointwise con-

vergence i� it is bounded with respect to the topology of compact convergence.

Proof. Exercise.

Lemma 3.27. Let S be a topological space and F ⊆ C(S, K) locally equicon-

tinuous. Then, the closures of F in the topology of pointwise convergence

and in the topology of compact convergence are locally equicontinuous.

Proof. Exercise.

Proposition 3.28. Let S be a topological space and F ⊆ C(S, K) locally

equicontinuous. If F is closed then it is complete, both in the topology of

pointwise convergence and in the topology of compact convergence.

Proof. We �rst consider the topology of pointwise convergence. Let F be a
Cauchy �lter in F . For each x ∈ S induce a �lter Fx = ex(F) on K through
the evaluation map ex : C(S, K) → K given by ex(f) := f(x). Then each Fx
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is a Cauchy �lter on K and thus convergent to a uniquely de�ned g(x) ∈ K.
This de�nes a function g : S → K. We proceed to show that g is continuous.
Fix a ∈ S and ε > 0. By equicontinuity, there exists a neighborhood U of
a such that f(U) ⊆ Bε(0) for all f ∈ F and hence |f(x) − f(y)| < 2ε for
all x, y ∈ U and f ∈ F . Fix x, y ∈ U . Then, there exists f ∈ F such that
|f(x) − g(x)| < ε and |f(y) − g(y)| < ε. Hence

|g(x) − g(y)| ≤ |g(x) − f(x)| + |f(x) − f(y)| + |f(y) − g(y)| < 4ε,

showing that g is continuous. Thus, F converges to g and g ∈ F if F is
closed.

We proceed to consider the topology of compact convergence. Let F be
a Cauchy �lter in F (now with respect to compact convergence). Then, F is
also a Cauchy �lter with respect to pointwise convergence and the previous
part of the proof shows that there exists a function g ∈ C(S, K) to which
F converges pointwise. But since F is Cauchy with respect to compact
convergence it must convergence to g also compactly. Then, if F is closed
we have g ∈ F and F is complete.

De�nition 3.29. Let V be a tvs and C ⊆ V a subset. Then, C is called
totally bounded i� for each neighborhood U of 0 in V there exists a �nite
subset F ⊆ C such that C ⊆ F + U .

Proposition 3.30. Let V be a tvs and C ⊆ V a totally bounded subset.

Then, C is bounded.

Proof. Exercise.

Proposition 3.31. Let C be a bounded subset of Kn with the standard topol-

ogy. Then C is totally bounded.

Proof. Exercise.

Proposition 3.32. Let V be a tvs and C ⊆ V a compact subset. Then, C
is complete and totally bounded.

Proof. Exercise.

Proposition 3.33. Let V be a Hausdor� tvs and C ⊆ V a subset. If C is

totally bounded and complete then it is compact.

If V is metrizable the above Proposition is simply a special case of Propo-
sition 1.55. We will not provide the general proof here.
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De�nition 3.34. Let S be a topological space and U ⊆ S a subset. Then,
U is called relatively compact in S i� the closure of U in S is compact.

Theorem 3.35 (generalized Arzela-Ascoli). Let S be a topological space.

Let F ⊆ C(S, K) be locally equicontinuous and bounded in the topology of

pointwise convergence. Then, F is relatively compact in C(S, K) with the

topology of compact convergence.

Proof. We consider the topology of compact convergence on C(S, K). By
Lemma 3.26, F is bounded in this topology. The closure F of F is bounded by
Proposition 2.10.c, equicontinuous by Lemma 3.27 and complete by Propo-
sition 3.28. Due to Proposition 3.33 it su�ces to show that F is totally
bounded. Let U be a neighborhood of 0 in V . Then, there exists K ⊆ S
compact and ε > 0 such that UK,3ε ⊆ U , where

UK,δ := {f ∈ V : |f(x)| < δ ∀x ∈ K}.

By equicontinuity we can choose for each a ∈ K a neighborhood W of
a such that |f(x) − f(a)| < ε for all x ∈ W and all f ∈ F . By com-
pactness of K there is a �nite set of points {a1, . . . , an} such that the as-
sociated neighborhoods {W1, . . . , Wn} cover S. Now consider the contin-
uous linear map p : C(S, K) → Kn given by p(f) := (f(a1), . . . , f(an)).
Since F is bounded, p(F ) is bounded in Kn (due to Proposition 2.12.b) and
hence totally bounded (Proposition 3.31). Thus, there exists a �nite subset
{f1, . . . , fm} ⊆ F such that p(F ) is covered by balls of radius ε centered
at the points p(f1), . . . , p(fm). In particular, for any f ∈ F there is then
k ∈ {1, . . . ,m} such that |f(ai) − fk(ai)| < ε for all i ∈ {1, . . . , n}. Speci-
fying also x ∈ K there is i ∈ {1, . . . , n} such that x ∈ Wi. We obtain the
estimate

|f(x) − fk(x)| ≤ |f(x) − f(ai)| + |f(ai) − fk(ai)| + |fk(ai) − fk(x)| < 3ε.

Since x ∈ K was arbitrary this implies f ∈ fk + UK,3ε ⊆ fk + U . We
conclude that F is covered by the set {f1, . . . , fm} + U . Since U was an
arbitrary neighborhood of 0 this means that F is totally bounded.

Proposition 3.36. Let S be a locally compact space. Let F ⊆ C(S, K) be

totally bounded in the topology of compact convergence. Then, F is equicon-

tinuous.

Proof. Exercise.
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3.5 The Hahn-Banach Theorem

Theorem 3.37 (Hahn-Banach). Let V be a vector space over K, p be a

seminorm on V , A ⊆ V a vector subspace. Let f : A → K be a linear

map such that |f(x)| ≤ p(x) for all x ∈ A. Then, there exists a linear map

f̃ : V → K, extending f (i.e., f̃(x) = f(x) for all x ∈ A) and such that

|f(x)| ≤ p(x) for all x ∈ V .

Proof. We �rst consider the case K = R. Suppose that A is a proper subspace
of V . Let v ∈ V \ A and de�ne B to be the subspace of V spanned by A
and v. In a �rst step we show that there exists a linear map f̃ : B → R such
that f̃(x) = f(x) for all x ∈ A and |f(y)| ≤ p(y) for all y ∈ B. Since any
vector y ∈ B can be uniquely written as y = x + λv for some x ∈ A and
some λ ∈ R, we have f̃(y) = f(x) + λf̃(v), i.e, f̃ is completely determined
by its value on v. For all x, x′ ∈ A we have

f(x) + f(x′) = f(x + x′) ≤ p(x + x′) ≤ p(x − v) + p(x′ + v)

and thus,
f(x) − p(x − v) ≤ p(x′ + v) − f(x′).

In particular, de�ning a to be the supremum for x ∈ A on the left and b to
be the in�mum for y ∈ A on the right we get

a = sup
x∈A

{f(x) − p(x − v)} ≤ inf
x′∈A

{p(x′ + v) − f(x′)} = b.

Now choose c ∈ [a, b] arbitrary. We claim that by setting f̃(v) := c, f̃ is
bounded by p as required. For x ∈ A and λ > 0 we get

f̃(x + λv) = λ
(
f̃
(
λ−1x

)
+ c
)
≤ λ p

(
λ−1x + v

)
= p (x + λv)

f̃(x − λv) = λ
(
f̃
(
λ−1x

)
− c
)
≤ λ p

(
λ−1x − v

)
= p (x − λv) .

Thus, we get f̃(x) ≤ p(x) for all x ∈ B. Replacing x by −x and using
that p(−x) = p(x) we obtain also −f̃(x) ≤ p(x) and thus |f̃(x)| ≤ p(x) as
required.

We proceed to the second step of the proof, showing that the desired
linear form f̃ exists on V . We will make use of Zorn's Lemma. Consider
the set of pairs (W, f̃) of vector subspaces A ⊆ W ⊆ V with linear forms
f̃ : W → R that extend f and are bounded by p. These pairs are partially
ordered by extension, i.e., (W, f̃) ≤ (W ′, f̃ ′) i� W ⊆ W and f̃ ′|W = f̃ .
Moreover, for any totally ordered subset of pairs {(Wi, f̃i)}i∈I there is an
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upper bound given by (WI , f̃I) where WI :=
∪

i∈I Wi and f̃I(x) := f̃i(x) for
x ∈ Wi. Thus, by Zorn's Lemma there exists a maximal pair (W, f̃). Since
the �rst part of the proof has shown that for any proper vector subspace
of V we can construct an extension, i.e., a pair that is strictly greater with
respect to the ordering, we must have W = V . This concludes the proof in
the case K = R.

We turn to the case K = C. Let fr(x) := <f(x) for all x ∈ A be the
real part of the linear form f : A → C. Since the complex vector spaces A
and V are also real vector spaces and p reduces to a real seminorm, we can
apply the real version of the proof to fr to get a real linear map f̃r : V → R
extending fr and being bounded by p. We claim that f̃ : V → C given by

f̃(x) := f̃r(x) − if̃r(ix) ∀x ∈ V

is then a solution to the complex problem. We �rst verify that f̃ is complex
linear. Let x ∈ V and λ ∈ C. Then, λ = a + ib with a, b ∈ R and

f̃(λx) = af̃(x) + bf̃(ix)

= af̃r(x) − aif̃r(ix) + bf̃r(ix) + bif̃r(x)

= (a + ib)
(
f̃r(x) − if̃r(ix)

)
= λf̃(x).

We proceed to verify that f̃(x) = f(x) for all x ∈ A. For all x ∈ A,

f̃(x) = <f(x) − i<f(ix) = <f(x) − i<(if(x)) = <f(x) + i=(f(x)) = f(x).

It remains to show that f̃ is bounded by p. Let x ∈ V . Choose λ ∈ C with
|λ| = 1 such that λf̃(x) ∈ R. Then,∣∣∣f̃(x)

∣∣∣ = ∣∣∣λf̃(x)
∣∣∣ = ∣∣∣f̃(λx)

∣∣∣ = ∣∣∣f̃r(λx)
∣∣∣ ≤ p(λx) = p(x).

This completes the proof.

Corollary 3.38. Let V be a normed vector space, c > 0, A ⊆ V a vector

subspace and f : A → K a linear form satisfying |f(x)| ≤ c‖x‖ for all x ∈ A.

Then, there exists a linear form f̃ : V → K that coincides with f on A and

satis�es |f̃(x)| ≤ c‖x‖ for all x ∈ V .

Proof. Immediate.
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Theorem 3.39. Let V be a locally convex tvs, A ⊆ V a vector subspace and

f : A → K a continuous linear form. Then, there exists a continuous linear

form f̃ : V → K that coincides with f on A.

Proof. Since f is continuous on A, the set U := {x ∈ A : |f(x)| ≤ 1} is a
neighborhood of 0 in A. Since A carries the subset topology, there exists
a neighborhood Ũ of 0 in V such that Ũ ∩ A ⊆ U . By local convexity,
there exists a convex and balanced subneighborhood W ⊆ Ũ of 0 in V . The
associated Minkowski functional

p(x) := inf{λ ∈ R+
0 : x ∈ λW}

is a seminorm on V and we have |f(x)| ≤ p(x) for all x ∈ A. Thus, we may
apply the Hahn-Banach Theorem 3.37 to obtain a linear form f̃ : V → K
that coincides with f on the subspace A and is bounded by p. Since p is
continuous this implies that f̃ is continuous.

Corollary 3.40. Let V be a locally convex Hausdor� tvs. Then, CL(V, K)
separates points in V . That is, for any pair x, y ∈ V such that x 6= y, there
exists f ∈ CL(V, K) such that f(x) 6= f(y).

Proof. Exercise.

3.6 More examples of function spaces

De�nition 3.41. Let T be a locally compact space. A continuous function
f : T → K is said to vanish at in�nity i� for any ε > 0 the subset {x ∈
T : |f(x)| ≥ ε} is compact in T . The set of such functions is denoted by
C0(T, K).

Exercise 15. Let T be a locally compact space. Show that C0(T, K) is
complete in the topology of uniform convergence, but not in general complete
in the topology of compact convergence.

De�nition 3.42. Let U be a non-empty open subset of Rn. For a multi-
index l ∈ Nn

0 we denote the corresponding partial derivative of a function
f : Rn → K by

Dlf :=
∂l1 . . . ∂ln

∂xl1
1 . . . ∂xln

n

f.

Let k ∈ N0. If all partial derivatives with |l| := l1 + · · · + ln ≤ k for a
function f exist and are continuous, we say that f is k times continuously
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di�erentiable. We denote the vector space of k times continuously di�er-

entiable functions on U with values in K by Ck(U, K). We say a function
f : U → K is in�nitely di�erentiable or smooth if it is k times continuously
di�erentiable for any k ∈ N0. The corresponding vector space is denoted by
C∞(U, K).

De�nition 3.43. Let U be a non-empty open and bounded subset of Rn and
k ∈ N0. We denote by Ck(U, K) the set of continuous functions f : U → K
that are k times continuously di�erentiable on U , and such that any partial
derivative Dlf with |l| ≤ k extends continuously to U . Similarly, we denote
by C∞(U, K) the set of continuous functions f : U → K, smooth in U and
such that any partial derivative extends continuously to U .

Example 3.44. Let U be a non-empty open and bounded subset of Rn. Let
l ∈ Nn

0 and de�ne the seminorm pl : Ck(U, K) → R+
0 via

pl(f) := sup
x∈U

∣∣∣(Dlf
)

(x)
∣∣∣

for k ∈ N0 with k ≥ |l| or for k = ∞. For any k ∈ N0 the set of seminorms
{pl : l ∈ Nn

0 , |l| ≤ k}makes Ck(U, K) into a normable vector space. Similarly,
the set of seminorms {pl : l ∈ Nn

0} makes C∞(U, K) into a locally convex
mvs.

Exercise 16. Let U be a non-empty open and bounded subset of Rn.
Show that C∞(U, K) with the topology de�ned above is complete, but not
normable.

De�nition 3.45. A topological space is called σ-compact i� it is locally
compact and admits a covering by countably many compact subsets.

De�nition 3.46. Let T be a topological space. A compact exhaustion of
T is a sequence {Ui}i∈N of open and relatively compact subsets such that
Ui ⊆ Ui+1 for all i ∈ N and

∪
i∈N Ui = T .

Proposition 3.47. A topological space admits a compact exhaustion i� it is

σ-compact.

Proof. Suppose the topological space T is σ-compact. Then there exists
a sequence {Kn}n∈N of compact subsets such that

∪
n∈N Kn = T . Since

T is locally compact, every point possesses an open and relatively compact
neighborhood. (Take an open subneighborhood of a compact neighborhood.)
We cover K1 by such open and relatively compact neighborhoods around
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every point. By compactness a �nite subset of those already covers K1.
Their union, which we call U1, is open and relatively compact. We proceed
inductively. Suppose we have constructed the open and relatively compact
set Un. Consider the compact set Un ∪ Kn+1. Covering it with open and
relatively compact neighborhoods and taking the union of a �nite subcover
we obtain the open and relatively compact set Un+1. It is then clear that
the sequence {Un}n∈N obtained in this way provides a compact exhaustion
of T since Ui ⊆ Ui+1 for all i ∈ N and T =

∪
n∈N Kn ⊆

∪
n∈N Un.

Conversely, suppose T is a topological space and {Un}n∈N is a compact
exhaustion of T . Then, the sequence {Un}n∈N provides a countable covering
of T by compact sets. Also, given p ∈ T there exists n ∈ N such that p ∈ Un.
Then, the compact set Un is a neighborhood of p. That is, T is locally
compact.

Proposition 3.48. Let T be a topological space, K ⊆ T a compact subset

and {Un}n∈N a compact exhaustion of T . Then, there exists n ∈ N such that

K ⊆ Un.

Proof. Exercise.

Proposition 3.49. Let T be a σ-compact space. Then, C(T, K) with the

topology of compact convergence is metrizable.

Proof. Exercise.

Example 3.50. Let U be a non-empty open subset of Rn and k ∈ N0∪{∞}.
Let W be an open and bounded subset of Rn such that W ⊆ U and let l ∈ Nn

0

such that |l| ≤ k. De�ne the seminorm pW,l : Ck(U, K) → R+
0 via

pW,l(f) := sup
x∈W

∣∣∣(Dlf
)

(x)
∣∣∣ .

The set of these seminorms makes Ck(U, K) into a locally convex tvs.

Exercise 17. Let U ⊆ Rn be non-empty and open and let k ∈ N0 ∪ {∞}.
Show that Ck(U, K) is complete and metrizable, but not normable.

Exercise 18. Let 0 ≤ k < m ≤ ∞. (a) Let U ⊂ Rn be non-empty, open and
bounded. Show that the inclusion map Cm(U, K) → Ck(U, K) is injective
and continuous, but does not in general have closed image. (b) Let U ⊆ Rn

be non-empty and open. Show that the inclusion map Cm(U, K) → Ck(U, K)
is injective and continuous, but is in general neither bounded nor has closed
image.
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Exercise 19. Let U ⊂ Rn be non-empty, open and bounded, let k ∈ N0 ∪
{∞}. Show that the inclusion map Ck(U, K) → Ck(U, K) is injective and
continuous. Show also that its image is in general not closed.

Exercise 20. Let k ∈ N0 ∪ {∞}. For f ∈ C1(R, K) consider the operator
D(f) := f ′. (a) Show that D : Ck+1([0, 1], K) → Ck([0, 1], K) is continuous.
(b) Show that D : Ck+1(R, K) → Ck(R, K) is continuous.

Exercise 21. Let k ∈ N0 ∪ {∞}. For f ∈ C(R, K) consider the operator

(I(f))(y) :=
∫ y

0
f(x) dx.

(a) Show that I : Ck([0, 1], K) → Ck+1([0, 1], K) is continuous. (b) Show
that I : Ck(R, K) → Ck+1(R, K) is continuous.

De�nition 3.51. Let D be a non-empty, open and connected subset of C.
We denote by O(D) the vector space of holomorphic functions on D. If D
is also bounded we denote by O(D) the vector space of complex continuous
functions on D that are holomorphic in D.

Exercise 22. (a) Show that O(D) is complete with the topology of uniform
convergence. (b) Show that O(D) is complete with the topology of compact
convergence.

Theorem 3.52 (Montel). Let D ⊆ C be non-empty, open and connected

and F ⊆ O(D). Then, the following are equivalent:

1. F is relatively compact.

2. F is totally bounded.

3. F is bounded.

Proof. 1.⇒2. F is compact and hence totally bounded by Proposition 1.55.
Since F is a subset of F it must also be totally bounded. 2.⇒3. This follows
from Proposition 3.30. 3.⇒1. Since D is locally compact, it is easy to see
that boundedness is equivalent to the following property: For each point
z ∈ D there exists a neighborhood U ⊆ D and a constant M > 0 such that
|f(x)| ≤ M for all x ∈ U and all f ∈ F . It can then be shown that F
is locally equicontinuous [Notes on Complex Analysis, Theorem 4.31]. The
Arzela-Ascoli Theorem 3.35 then ensures that F is relatively compact.
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De�nition 3.53. Let X be a measurable space, µ a measure on X and
p > 0. De�ne

Lp(X,µ, K) := {f : X → K measurable : |f |p integrable}.

Also de�ne

L∞(X, µ, K) := {f : X → K measurable : |f | bounded almost everywhere}.

We recall the following facts from real analysis.

Example 3.54. The set Lp(X,µ, K) for p ∈ (0,∞] is a vector space.

1. ‖ · ‖∞ : L∞(X,µ, K) → R+
0 given by

‖f‖∞ := inf{‖g‖sup : g = f a.e. and g : X → K bounded measurable}

de�nes a seminorm on L∞(X,µ, K), making it into a complete semi-
normed space.

2. If 1 ≤ p < ∞, then ‖ · ‖p : Lp(X,µ, K) → R+
0 given by

‖f‖p :=
(∫

X
|f |p

)1/p

de�nes a seminorm on Lp(X, µ, K), making it into a complete semi-
normed space.

3. If p ≤ 1, then sp : Lp(X, µ, K) → R+
0 given by

sp(f) :=
∫

X
|f |p

de�nes a semi-pseudo-norm on Lp(X, µ, K), making it into a complete
semi-pseudo-normed space.

Example 3.55. For any p ∈ (0,∞], the closure N := {0} of zero in
Lp(X, µ, K) is the set of measurable functions that vanish almost every-
where. The quotient space Lp(X, µ, K) := Lp(X, µ, K)/N is a complete mvs.
It carries a norm (i.e., is a Banach space) for p ≥ 1 and a pseudonorm oth-
erwise. In the case p = 2 the norm comes from an inner product making the
space into a Hilbert space.
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3.7 The Banach-Steinhaus Theorem

De�nition 3.56. Let S be a topological space. A subset C ⊆ S is called
nowhere dense i� its closure C does not contain any non-empty open set. A
subset C ⊆ S is called meager i� it is the countable union of nowhere dense
subsets.

Proposition 3.57. Let X and Y be tvs and A ⊆ CL(X, Y ). Then A is

(locally) equicontinuous i� for any neighborhood U of 0 in Y there exists a

neighborhood V of 0 in X such that

f(V ) ⊆ W ∀f ∈ A.

Proof. Immediate.

Theorem 3.58 (Banach-Steinhaus). Let X and Y be tvs and A ⊆ CL(X, Y ).
For x ∈ X de�ne A(x) := {f(x) : f ∈ A} ⊆ Y . De�ne B ⊆ X as

B := {x ∈ X : A(x) is bounded}.

If B is not meager in X, then B = X and A is equicontinuous.

Proof. We suppose that B is not meager. Let U be an arbitrary neighbor-
hood of 0 in Y . Choose a closed and balanced subneighborhood W of 0.
Set

E :=
∩
f∈A

f−1(W )

and note that E is closed and balanced, being an intersection of closed and
balanced sets. If x ∈ B, then A(x) is bounded, there exists n ∈ N such that
A(x) ⊆ nW and hence x ∈ nE. Therefore,

B ⊆
∞∪

n=1

nE.

If all sets nE were meager, their countable union would be meager and also
the subset B. Since by assumption B is not meager, there must be at least
one n ∈ N such that nE is not meager. But since the topology of X is scale

invariant, this implies that E itself is not meager. Thus, the interior
◦
E =

◦
E

is not empty. Also,
◦
E is balanced since E is balanced and thus must contain

0. In particular,
◦
E, being open, is therefore a neighborhood of 0 and so is E

itself. Thus,
f(E) ⊆ W ⊆ U ∀f ∈ A.
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This means that A is equicontinuous. Let now x ∈ X arbitrary. Since x is
bounded, there exists λ > 0 such that x ∈ λE. But then, f(x) ∈ f(λE) ⊆
λU for all f ∈ A. That is, A(x) ⊆ λU , i.e., A(x) is bounded and x ∈ B.
Since x was arbitrary, B = X.

Proposition 3.59. Let S be a complete metric space and C ⊆ S a meager

subset. Then, C does not contain any non-empty open set. In particular,

C 6= S.

Proof. Since C is meager, there exists a sequence {Cn}n∈N of nowhere dense
subsets of S such that C =

∪
n∈N Cn. De�ne Un := S \ Cn for all n ∈ N.

Then, each Un is open and dense in S. Thus, by Baire's Theorem 1.59
the intersection

∩
n∈N Un is dense in S. Thus, its complement

∪
n∈N Cn

cannot contain any non-empty open set. The same is true for the subset
C ⊆

∪
n∈N Cn.

Corollary 3.60. Let X be a complete mvs, Y be a tvs and A ⊆ CL(X, Y ).
Suppose that A(x) := {f(x) : f ∈ A} ⊆ Y is bounded for all x ∈ X. Then,

A is equicontinuous.

Proof. Exercise.

Corollary 3.61. Let X be a Banach space, Y a normed vector space and

A ⊆ CL(X, Y ). Suppose that

sup
f∈A

‖f(x)‖ < ∞ ∀x ∈ X.

Then, there exists M > 0 such that

‖f(x)‖ < M‖x‖ ∀x ∈ X, ∀f ∈ A.

Proof. Exercise.

3.8 The Open Mapping Theorem

De�nition 3.62. Let S, T be topological spaces and f : S → T . For a ∈ S
we say that f is open at a i� for every neighborhood U of a the image f(U)
is a neighborhood of f(a). We say that f is open i� it is open at every a ∈ S.

Proposition 3.63. Let S, T be topological spaces and f : S → T . f is open

i� it maps any open set to an open set.

Proof. Straightforward.
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Theorem 3.64. Let X be a Hausdor� tvs and C a closed vector subspace.

1. The quotient map q : X → X/C is linear, continuous and open. More-

over, the quotient topology on X/C is the only topology such that q is

continuous and open.

2. The image of a base of the �lter of neighborhoods of 0 in X is a base

of the �lter of neighborhoods of 0 in X/C.

3. The quotient tvs X/C inherits local convexity, local boundedness, metriz-

ability, normability and completeness if X possesses the respective prop-

erty.

Proof. Exercise.

Theorem 3.65 (Open Mapping Theorem). Let X be a complete mvs, Y
a Hausdor� tvs, f ∈ CL(X,Y ) and f(X) not meager in Y . Then, Y is a

complete mvs and f is open and surjective.

Proof. Suppose U is a neighborhood of 0 in X. Let V ⊆ U be a balanced
subneighborhood of 0. Since every point of X is bounded we have

X =
∪
n∈N

nV and hence f(X) =
∪
n∈N

nf(V ).

But f(X) is not meager, so nf(V ) is not meager for at least one n ∈ N.
But then scale invariance of the topology of Y implies that f(V ) itself is

not meager. Thus,
◦

f(V ) is not empty, is open and balanced (since V is
balanced) and thus forms a neighborhood of 0 in Y . Consequently, f(V ) is
also a neighborhood of 0 in Y and so is f(U).

Consider now a compatible pseudonorm on X. Let U be a neighbor-
hood of 0 in X. There exists then r > 0 such that Br(0) ⊆ U . Let
y1 ∈ f(Br/2(0)). We proceed to construct sequences {yn}n∈N and {xn}n∈N

by induction. Supposed we are given yn ∈ f(Br/2n(0)). By the �rst part of

the proof f(Br/2n+1(0)) is a neighborhood of 0 in Y . Thus,

f(Br/2n(0)) ∩
(
yn + f(Br/2n+1(0))

)
6= ∅.

In particular, we can choose xn ∈ Br/2n(0) such that

f(xn) ∈ yn + f(Br/2n+1(0)).
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Now set yn+1 := yn − f(xn). Then, yn+1 ∈ f(Br/2n+1(0)) as the latter is
balanced.

Since in the pseudonorm ‖xn‖ < r/2n for all n ∈ N, the partial sums
{
∑m

n=1 xn}m∈N form a Cauchy sequence. (Use the triangle inequality). Since
X is complete, they converge to some x ∈ X with ‖x‖ < r, i.e., x ∈ Br(0).
On the other hand

f

(
m∑

n=1

xn

)
=

m∑
n=1

f(xn) =
m∑

n=1

(yn − yn+1) = y1 − ym+1.

Since f is continuous the limit m → ∞ exists and yields

f(x) = y1 − y where y := lim
m→∞

ym.

Note that our notation for the limit y implies uniqueness which indeed follows
from the fact that Y is Hausdor�.

We proceed to show that y = 0. Suppose the contrary. Again using that
Y is Hausdor� there exists a closed neighborhood C of 0 in Y that does not
contain y. Its preimage f−1(C) is a neighborhood of 0 in X by continuity
and must contain a ball Br/2n(0) for some n ∈ N . But then f(Br/2n(0)) ⊆ C

and f(Br/2n(0)) ⊆ C since C is closed. But yk ∈ f(Br/2n(0)) ⊆ C for all
k ≥ n. So no yk for k ≥ n is contained in the open neighborhood Y \ C of
y, contradicting convergence of the sequence to y. We have thus established
f(x) = y1. But since x ∈ Br(0) and y1 ∈ f(Br/2(0)) was arbitrary we may

conclude that f(Br/2(0)) ⊆ f(Br(0)) ⊆ f(U). By the �rst part of the proof

f(Br/2(0)) is a neighborhood of 0 in Y . So we may conclude that f(U) is
also a neighborhood of 0 in Y . This establishes that f is open at 0 and hence
open everywhere by linearity.

Since f is open the image f(X) must be open in Y . On the other hand
f(X) is a vector subspace of Y . But the only open vector subspace of a tvs
is the space itself. Hence, f(X) = Y , i.e., f is surjective.

Let now C := ker f . Since f is surjective, Y is naturally isomorphic to
the quotient space X/C as a vector space. Since f is continuous and open Y
is also homeomorphic to X/C by Theorem 3.64.1 and hence isomorphic as a
tvs. But then Theorem 3.64.3 implies that Y is metrizable and complete.

Corollary 3.66. Let X, Y be complete mvs and f ∈ CL(X, Y ) surjective.

Then, f is open.

Proof. Exercise.


